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Non-local implementation of single-qubit rotation operation
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‘We present two optimal schemes for non-local implementing a single-qubit rotation operation via a maxi-
mally entangled quantum channel. We report on the quantitative relations between the quantum action,
entangled and classical communication resources required in the implementation. We also put forward two
schemes for conclusive implementing the non-local quantum single-qubit rotation via a partially entangled
quantum channel. Both these methods can appropriately be referred to as qubit-assisted processes.
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The quantum non-locality, i.e. there are non-local cor-
relations among quantum systems, plays a central role
in quantum computation and quantum information. In
the past, most research on quantum non-locality has
been devoted to the issue of non-locality of quantum
states' =7, However, an equally important issue is that
of non-locality of quantum operations. This situation
arises, for examﬁ)le, in the context of distributed quan-
tum computer(®, where two or more spatially sepa-
rated computation units are available to solve a com-
putation problem. Another examples where non-local
quantum operations are required are quantum network
communication!® and the production of multi-particle
entangled states!’®. For the alluring potential applica-
tion, some fundamental research on non-local quantum
operation has been presented!*1—15],

It is proved that any unitary operation on N qubits
may be implemented exactly by composing single-qubit
rotations and control-Not gates®. This implies that the
single-qubit rotation is an especially important essential
operation, and the resource requirement for implement-
ing the operation is one of the limiting factors in the
construction of general unitary transformation in quan-
tum computational and informational networks. In this
letter, we will investigate the non-local implementation
of a quantum single-qubit rotation. We will restrict our

attention to the rotations about Z axis
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for an arbitrary angle § € (0,27]. Note that U, =
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e™/8T; and U2, = et/ ( (1] ? ) = ¢!™/45. The Pauli
operator Z, w/8 gate T' and phase gate S are some of the
most important essential gates.

Consider Alice and Bob are localized in different space
domains, who are able to perform local operations. They
also have addition resources, namely they share entangled
state, and they are able to communicate classically. Alice
possesses a device which is able to perform Uy, whereas
Bob has a qubit in the unknown state

[¥)p = al0)p + B|1)B. (2)
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Their goal is that Bob ends up with the processed state
Usly) = ae™'3]0) g + Be'3 |1) . 3)

First of all, it is important to note that any unitary
operation can be implemented non-locally given enough
shared entanglement and classical communication. Con-
sider the case of single-qubit rotation, the unitary trans-
formation Uy on Bob’s qubit |¢))p can be accomplished
by Bob teleporting his qubit to Alice, Alice performing
Uy locally and finally Alice teleporting Bob’s qubit back
to Bob. The resources needed for the two teleporta-
tion actions are: “one e-bit puls two classical bits (c-
bit) transmitted from Bob to Alice for the Bob to Alice
teleportation” plus “one e-bit plus two c-bits from Alice
to Bob for the Alice to Bob teleportation”. The “dou-
ble teleportation” 18 procedure shown above is sufficient
to implement any quantum evolution. The question is,
however, whether so many resources are actually needed.
In this letter, we firstly present two perfect schemes by
which the single-qubit rotation can be implemented non-
locally using an Einstein-Podolsky-Rosen (EPR) pair as
quantum channel. The consumption of overall physical
resources is compared for the two schemes. Then, we
propose other two schemes of non-local implementation
of single-qubit rotation via a partially entangled quantum
channel, and the probability of successful implementation
is given.

Suppose Alice and Bob previously share a EPR pair

|#)5a = 1/v/2(|00)3q + [11)5a)- (4)

The particles a and b belong to Alice and Bob, respec-
tively. The initial state of the whole system is

[¥)Boa = 1/v2(|0)5 + BI1)5) (100060 + [11)sa).  (5)

Implementation scheme 1.1 is defined as two-way clas-
sical communication scheme.

Step 1: A local CNOT operation is applied between
Bob’s qubits with the B acting as the control qubit fol-
lowing by a projective measurement of the target qubit
b in the computation basis. Qubit b is subsequently dis-
carded. This sequence consumes one c-bit from Bob to
Alice. If the result is |0)3, Alice does nothing; and if the
result is |1)p, Alice performs the X (here and below, we
will write X and Z instead of o, and ¢,.) operation on
qubit a. After these operations, the state given by Eq.
(5) will become

1/v2(]00) g + B]11) Ba).- (6)
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Step 2: Alice applies the operation Uy onto her qubit
a followed by a Hadamard transformation. The global
state of the distributed system after this action can be
written as

306 810)5(10)a + 1) + 584 1) 5 (0)a 1))

= SUs(@l0) + B11))s10)a + 5 Z5Us(al0) + BI1Y) 5[La.

(7)

A projective measurement in computation basis on Al-
ice’s side yields a collapsed state on Bob’s side which
is either the state shown in Eq. (3) whenever the mea-
surement outcome is |0),, or a state that can be locally
transformed into the state (3). If the measurement out-
come is |1},, all Bob has to do is applying the correcting
operation Z on qubit B. Bob needs to know Alice’s mea-
surement outcome therefore a further c-bit is consumed
in the second part of the scheme.

Synthesizing all conditions (four kinds), we obtain the
probability of successful implementation is P = (1/2)? x
4 = 1. We have thus shown how to non-local implement,
a single-qubit rotation and seen that it consumes one e-
bit and one c-bit in each direction.

Implementation scheme 1.2 is defined as one-way clas-
sical communication scheme.

The initial state of the whole system is still in state (5).

Step 1: Bob performs a control-Rotation operation Rpp
on his qubits B and b (with the control being qubit B)

Rpy = |00)(00| + |01)(01]| — |10) (11| + |11)(10],
then Eq. (5) will be transformed into
1/v2(a|00) g + BI11) ) 0)a

+1/v2(|01) 5o — 110 55)|1)a.- (8)

Step 2: Alice performs the rotation operation Uy on
his qubit @, and then a Hadamard transform, after that,
Expression (8) will be

%(a|00)3b + 8|11 By)e™ 5 (|0)a + [1)a)

45001 5 — 10 )l ® (00— D) (9)

Then, Alice performs a computation basis measure-
ment on his qubit ¢ and qubit a is subsequently dis-
carded. If the result is |0),, particles B and b are located
in the state

1 —id g
5 (@l0)pe™"% — A1) peiE) o),
1 8 —i8
+§(a|0)3e 2 4+ B|1)pe"2)|1)s. (10a)
Otherwise, they will be located in the state
1 —i8 ;8
5(@l0)pe™2 + f[1)pe’2)|0)
1 8 —ié
—5(al0)pe’2 — B[1)pe™"2)[1)s. (10b)

Alice informs Bob of the measurement result, which is
one c-bit of information.

Step 3: Suppose Alice’s measurement result is |0),.
From this Bob concludes that the state of particles B
and b is Expression (10a). Then Bob performs a compu-
tation basis measurement on his qubit b. If the measure-
ment outcome is |1}, Expression (10a) will be

£ (@l0) e’ + Bl1) e %) = U (0l0)s + 1) m), (1)

the implementation fails. If the measurement outcome is
|0)s, Bob performs a Pauli operator Z on qubit B and
Expression (10a) will be

S(@l0)pe™% + 1)nei®) = SUaalo)s + B1)n). (12)

This completes the non-local single-qubit rotation with
probability P = (1/2)? x 2 = 1/2 (2 kinds all). Remark-
able enough, in this scheme only one-way communication
(one c-bit) is required (in addition to entanglement (one
e-bit)) in order to remotely “rotate” Bob’s qubit by Al-
ice, as opposed to the two-way classical communication
of the scheme 1.1. The price to be paid, however, is that
the scheme 1.2 only succeeds with probability 1/2.

In real situations Alice and Bob may not have shared
maximally entangled state but partially entangled state
(due to some imperfection at the source). This means
that the quantum channel for implementing will be im-
perfect. Usually if one follows the above schemes, one
will not be able to complete the implementation pro-
cess with unit fidelity. Of course, if one has several
partially entangled pairs one can first perform entan-
glement concentration'”) and then recover fewer perfect
maximally entangled pairs, and then use one of them to
implement the operation using the above schemes. If Al-
ice and Bob have only one pair, there are two strategies
to non-local implement the operation Uy via partially
entangled channel: 1) purifying the partially entangled
channel to a maximally entangled channel before using
it by entanglement concentration then implementing the
operation; 2) implementing the operation through the
partially entangled channel directly then rectifying the
distorted operation. In the following, we will use the
second strategy to investigate how the operation Uy can
be implemented non-locally with unit fidelity albeit with
reduced probability by using partially entangled state as
quantum channel. We propose two explicit schemes for
this purpose. We will see that both these methods can
appropriately be referred to as qubit-assisted processes,
since in both proposes either Alice or Bob is required to
prepare a qubit in some specified state to implement the
respective protocol.

Suppose Alice and Bob share a partially entangled state

|¢)ba, = a|00)ba + blll)ba, (|a‘|2 + |b|2 =1, |a| > |b|) (13)
The initial state of the whole system is

|%) Bba = (c¢|0) B + B|1) B) (a|00)pe + b|11)ps). (14)



January 10, 2004 / Vol. 2, No. 1 / CHINESE OPTICS LETTERS 61

Implementation scheme 2.1 is that Alice introduces an
ancilla qubit.

The goal of this proposal is to modify the measurement
part of Alice so that after Alice carries out her specific
measurement and communicates her result, the state of
Bob will be given by state (3).

Step 1: The first step of the scheme is exactly the same
as the one shown in scheme 1.1. After this, Eq. (14) will
become

ac|00) o + bB|11) B

(if Bob's measurement result is |0)y), (15a)
or

ba|00) o + aB|11) B

(if Bob's measurement result is |1)p).  (15b)

Suppose Bob’s measurement result is [0).

Step 2: Alice applies the operation Uy onto her qubit a,
and the state of the distributed system after this action
can be written as

ace™%(0) 5|0)q + bBe'%|1) 5|1)q. (16)

Step 3: Alice now prepares an ancilla qubit a’ in the
state

X)ar = [0)ar + [1)ar- (17)

The combined state of the three qubits is given by
|"/’)Baa’

= (aae_i% |0} 5]0)q + bﬁei%|1)B|1)a)(|0)a’ + [1)ar)

= %{[Ua(alo) +81))5](a|00) + b[11)) aar

+1ZBUs(a|0) + B[1)) B](al00) — B11))aar
+[Us(|0) + 8]1)) 5](al01) + b[10)) aar

+[ZBUs(a|0) + B[1)) 8](a|01) — [10))gar }- (18)

Now measurement on Alice’s side takes place in
two steps. The first measurement projects the state
onto either of the subspaces spanned by {|00),|11)} or
{|01),|10)}. Thus this measurement has two possible out-
comes that occur with equal probability. Suppose the re-
sult is in the subspace spanned by {|00),|11)}. Alice now
performs an optimal positive operator value measurel®!
(POVM), which provides the most general physically re-
alizable measurement in quantum mechanics. The gen-
eralized measurement can distinguish conclusively be-
tween the two nonorthogonal states (a|00) + b|11)) and
(a|00) — b|11)). Having the measurement result on qubit
a and a', Bob can transform the state of his qubit into
the state (3).

In step 1, if Bob’s measurement result is |1)p, it can be
discussed in the same way.

Because there is always a possibility of an inconclu-
sive result in the state discrimination procedure, the total

probability of successful implementation is 2|b|2. Thus,
we can say that using E(|¢)se) = (—a?logy a®—b2 log, %)
amount of entanglement, one c-bit from Bob to Alice
and two c-bits from Alice to Bob, Alice can remotely
“rotates” Bob’s qubit with unit fidelity and probability
2|b]2. Note that for b = 1/4/2, which corresponds to
a maximally entangled channel, the proposal is always
successful with certainty as there need not be any incon-
clusive result since in this case one discriminates between
two orthogonal states.

The previous proposal suggested changes in the type of
measurement by Alice. In the following proposal we keep
the measurement part of Alice intact but modify Bob’s
local implementation.

Implementation scheme 2.2 is that Bob introduces an
ancilla qubit.

Step 1 — Step 2: The first two steps of the scheme are
exactly the same as the ones shown in scheme 1.1. After
this, Eq. (14) will become

%Ug(aam)B +bB|1)5)

(in step 1, if Bob's measurement result is |0);), (19a)

or

%Uo(balms +aB|1)p)

(in step 1, if Bob's measurement result is |1);). (19b)

But Bob finds they yet cannot evolve the state (2) to
the state (3) which they need, because the states (19)
include the parameters of the imperfect quantum chan-
nel, a and b. In order to distill the state (3) from the
states (19), Bob must give some evolution to rectify the
distorted state.

Suppose Bob’s measurement result is |0); in the step
1.

Step 3: Bob prepares an ancilla qubit &' in a state |0} .
Thus the combined state of the two qubits that Bob holds
is now given by

[9) By = %Ua (ae|00) + bB|10)) By . (20)

Bob now performs a CNOT operation on his two qubits
states (with the control being qubit B), thus transform-
ing it into the state

Y'Y By = ;ﬁ{(am) +0[1)) B[Us(a|0) + B|1))w]

+(al0) — bBI1)) B[Zy Ug(|0) + B|1))p]}. (21)

Form Eq. (21) it is clear that an optimal POVM , which
can conclusively distinguish between the two nonorthog-
onal states (a|0) + b|1)) and (a|0) — b|1)), will give the
desired result. Note that the POVM can be carried out
on any one of the two qubits that Bob holds.

In step 1, if Bob’s measurement result is |1), it can be
discussed in the same way. Synthesizing all cases, we ob-
tain the total probability of obtaining a conclusive result
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is 2b|2.

It may be noted that, in the sense of successful imple-
mentation probability, implementing the non-local single-
qubit rotation operation directly through the partially
entangled channel is always better than the strategy
based on purification of the channel firstly. For a sin-
gle copy, the best purification is the method shown in
Ref. [17], which has optimal efficiency 2|b|2. If we re-
strict performance of purification to the use of linear de-
vices, the efficiency will be less than 2[b|?. That is, if we
purify the partially entangled quantum channel before
using it to implement the rotation operation based on lin-
ear devices, the probability of successful implementation
is always less than 2|b|2. On the other hand, although
the probabilistic operations may be not so useful in the
context of quantum computation, as it may change the
complexity class of the problem and may thus destroy the
(exponential) speed up of the quantum algorithm in ques-
tion. However, probabilistic gates are useful for processes
such as entanglement distillation!®, which itself is al-
ready a probabilistic process. For example, this may help
in the implementation of quantum repeaters!'®'%] using
photons only (i.e., for quantum communication over ar-
bitrary distance). Due to the fact that photons are ideal
candidates for quantum information processing (due to
their fast propagation), it is highly desirable to manip-
ulate them directly rather than mapping their states on
the states of another physical system, e.g. of an ion or
an atom, and vice versa.

In summary, the schemes for non-local implementing
a single-qubit rotation operation by different quantum
channels have been presented. One quantum channel is
that Alice and Bob share the EPR pair. By performing
the local operations and projective measurements, Al-
ice can remotely “rotate” Bob’s qubit. Comparing the
schemes 1.1 and scheme 1.2, the first one gains an ad-
vantage over the other in the successful implementation
probability P = 1, but it is a two-way communication
scheme. The second one reduces the number of c-bit
to one, which consumes less resource at the expense of
the less success probability P = 1/2. Making use of a
partially entangled quantum channel, the non-local im-
plementation of a single-qubit rotation operation can be
realized with unit fidelity albeit with reduced probabil-
ity. In both scheme 2.1 and scheme 2.2, either Alice or
Bob is required to prepare a qubit in some specified state
to implement the respective protocols. The probability

of success is equal to the twice modulus square of the
smaller coefficient of the entangled two-particle state.
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